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Summary : MM2 calculations indicate that roofed polyquinane ring systems 
containing trans double bonds are hyperstable. The stability results from 
repulsions at the rim of the cylindrical cage in the hydrogenated Forms. 

Using molecular mechanics calculations, Maier and Schleyer' made the remarkable 

proposal that certain ring systems enclosing a trans double bond2 may have less 

strain than their saturated analogues (i.e. olefin strain, OS, is negative).3 As 

an important chemical consequence, such hyperstable olefins were predicted to 

resist hydrogenation. 4 Numerous examples of bridgehead olefins with the above 

characteristics have since been experimentally observed.2y5 Further computa- 

tional work has led to the generalization that anti-Bredt olefins with the trans 

double bond in a medium ring (with 10 or more atoms) may all be hyperstable.6*7 

The above results have considerable significance for the tetraquinane + 

diquinane approach (l_)8 envisaged for the synthesis of dodecahedrane, which 

involves roofed polyquinanes, 2 and 3. These systems possess trans double bonds 

formally enclosed in 10 and 11 membered rings. Any hyperstability associated 

with these olefins would inhibit the hydrogenation step essential for the 

eventual construction of the dodecahedrane framework. We have therefore used MM2 

calculations ' for critically evaluating the strain energies in these systems. 

The relative rigidity of 

estimates compared to many 

the cage compounds is expected to lead to precise 

of the bridgehead olefins studied earlier. 1,6,7,10 
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z 
9: X=CH2 
&X=CO 3 

j-Dedicated to Professor P. v. R. Schleyer on the occasion of his 60th Birthday 
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The strain energies computed for the trienes, 2a and &I, are substantially lower - 

than those of their saturated analogues, 12a and 2, respectively. 'I Although 

the reduction per double bond is not as large as in some of the bridgehead 

systems examined earlier, 6p7 both 2a and 3a are clearly hyperstable. Even the - - 

partially reduced bridgehead olefins, G, fi, fi, G, e, and 9a, have negative 

OS values ranging from -5.4 to -9.3 kcal/mol (Scheme 1). Thus, the heats of 

hydrogenation of the trans double bonds in these systems are as low as 17-21 

kcal/mol (compared to 26.1 kcal/mol for unstrained trisubstituted olefins'). 

Scheme 1: Calculated OS values (heats of hydrogenation in parentheses) 
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Interestingly, the corresponding dicarbonyl compounds have far less 

hyperstability. The total OS value for 2b is only -5.9 kcal/mol, while it is - 

virtually zero for 3b (Scheme 2). However, some of the hydrogenation steps along - 

the overall reduction pathway may prove to be bottlenecks ev'en in these systems. 

For example, 10b can be reached with relative ease from 2b by‘the reduction of - 
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the two trans double bonds (AHhyd of 29 kcal/mol per step), but the final 

hydrogenation leads to an increase in strain of 5.5 kcal/mol (Atlhyd = 22 

kcal/mol). A similar trend is found for the hydrogenation steps involving 3b. - 

Scheme 2: Calculated OS values (heats of hydrogenation in parentheses) 
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The reduction in hyperstability due to carbonyl groups outside the rings 

containing the trans double bonds is significant in two respects. For the 

synthetic strategy 1, the additional carbonyl groups are indicated to be crucial 

for the smooth hydrogenation of the double bonds, apart from being needed for 

the insertion of an additional carbon to complete the tetraquinane subunit.8'12 

Further, the result points to the possible origin of hyperstability in these 

systems. In these cylindrical molecules, hydrogenation of a double bond leads to 

enhanced nonbonded repulsions, especially at the rim of the cage. The effect is 

quite pronounced in 2b and 3b due to H..H interactions,13 but is reduced when - - 

two methylene fragments are replaced by carbonyl units.14 Thus, the 

hyperstability in these systems is essentially determined by the cage geometry 

and is significantly modulated by remote substituents at the rim of the cage. 
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